\qquad Class: \qquad Date: \qquad

Module 3 Test Polynomials

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Identify the parent function for $g(x)=(x+3)^{3}$ and describe what transformation of the parent function it represents.
A The parent function is the cubic function, $f(x)=x^{3}$. $g(x)=(x+3)^{3}$ represents a vertical translation of the parent function 3 units up.
B The parent function is the cubic function, $f(x)=x^{3}$. $g(x)=(x+3)^{3}$ represents a horizontal translation of the parent function 3 units to the left.
C The parent function is the cubic function, $f(x)=x^{3}$. $g(x)=(x+3)^{3}$ represents a horizontal translation of the parent function 3 units to the right.
D The parent function is the cubic function, $f(x)=x^{3}$. $g(x)=(x+3)^{3}$ represents a vertical translation of the parent function 3 units down.
2. Which is a graph of an even function with a positive leading coefficient?
A

B

C

D

3. Graph $f(x)=x^{3}+6 x^{2}+9 x$. Identify the intercepts and give the domain and range.
A

The x-intercepts are -3 and 0 . The y-intercept is 0 . The domain and range are all real numbers.

B

The x-intercepts are -3 and 0 . The y-intercept is 0 . The domain and range are all real numbers.

C

The x-intercepts are -1.5 and 0 . The y-intercept is 0 . The domain is all real numbers. The range is approximately $y \geq-3.25$.
D

The x - and y-intercepts are both zero. The domain and range are all real numbers.
4. If $f(x)$ is an odd function with a negative leading coefficient, $g(x)$ is an even function with a negative leading coefficient, and $h(x)$ is the product of $f(x)$ and $g(x)$, which of the following could be the graph of $h(x)$?
A

C

5. Which is the graph of the polynomial function $p(x)=(x-1)(x+1)(x-4)$?
A

C

B

D

6. The graph of the polynomial function $p(x)$ is shown. What are the zeros of $p(x)$? (Assume that the zeros of $p(x)$ are integers and that the graph of $p(x)$ does not cross the x-axis at places other than those shown.)

A $\quad x=-3$ and $x=2$
B $x=-3, x=0$, and $x=2$
C $x=0$
D $x=-2, x=0$, and $x=3$
7. Subtract $2 x y^{3}-3 x y^{3}$.
A $x y^{3}$
C $-x y^{3}$
B $-6 x y^{3}$
D -1
8. Multiply $(x+2)\left(3 x^{2}-4 x+5\right)$.
A $3 x^{3}+2 x^{2}-3 x+10$
C $3 x^{3}-2 x^{2}-3 x+10$
B $3 x^{3}-4 x^{2}+5 x+10$
D $3 x^{3}+10 x^{2}+13 x+10$
9. Multiply $(b+3)\left(b^{2}+2 b+1\right)$.
A $\quad b^{3}+6 b^{2}+6 b+3$
C $3 b^{3}+6 b^{2}+3 b$
B $b^{3}+5 b^{2}+7 b+3$
D $4 b^{3}+8 b^{2}+3 b$
10. Subtract $\left(7 a^{2}-3 a\right)-\left(5 a^{2}-5 a\right)$.
A $2 a^{2}-8 a$
C $\quad 12 a^{2}+2 a$
B $2 a^{2}+2 a$
D $12 a^{2}-8 a$
11. Multiply $(3 x-2)(2 x+6)$.
A $6 x^{2}+5 x+12$
C $6 x^{2}+14 x-12$
B $6 x^{2}-2$
D $6 x^{2}+4$
12. Subtract. $\left(x^{3}-2 x+3\right)-\left(3 x^{2}+4 x-3\right)$
A $-2 x^{3}-6 x+6$
C $x^{3}+3 x^{2}+2 x$
B $-x^{3}+3 x^{2}+6 x-6$
D $x^{3}-3 x^{2}-6 x+6$
13. Find the product.
$\left(x^{2}-2 x-3\right)\left(3 x^{2}+4 x-1\right)$
A $3 x^{4}-2 x^{3}-18 x^{2}-10 x+3$
C $3 x^{4}-x^{3}-18 x^{2}-10 x+3$
B $3 x^{4}-2 x^{3}-16 x^{2}-10 x+3$
D $3 x^{4}-x^{3}-16 x^{2}-10 x+3$
14. Add.
$\left(-7 p^{5} q+6 p q\right)+\left(4 p^{5} q-8 p q+3\right)+(7 p q+7)$
A $-11 p^{5} q+13 p q+10$
C $-3 p^{5} q+5 p q+10$
B $-3 p^{5} q+21 p q+10$
D $-4 p^{5} q+5 p q+9$
15. Multiply.
$(6 r+4 s)^{2}$
A $36 r^{2}+16 s^{2}$
C $36 r^{2}+24 r s+16 s^{2}$
B $\quad 12 r^{2}+8 s^{2}$
D $36 r^{2}+48 r s+16 s^{2}$
16. Which expression represents the perimeter of the triangle below?

A $3+4 m$
C $5+4 m$
B $3+6 m$
D $5+6 m$
17. Which is the product $\left(x^{2}-x+9\right)(x-3)$?
A $x^{3}-4 x^{2}+12 x-27$
C $x^{3}+9 x-27$
B $x^{3}-4 x^{2}-27 x+12$
D $x^{3}-3 x^{2}+9 x-9$
18. A rectangular garden has a length of $5 a+17$ feet and a width of $4 a$ feet. Which expression represents the area of the garden in square feet?
A $20 a+68$
C $20 a^{2}+17$
B $20 a^{2}+68 a$
D $25 a^{2}+64 a$
19. Find the product $-2 a^{3} b^{4}\left(3 a^{3} b^{2}+4 b^{4}\right)$.
A $-2 a^{7} b^{7}-2 a^{4} b^{9}$
C $-6 a^{9} b^{8}-8 b^{16}$
B $-6 a^{6} b^{6}-8 a^{3} b^{8}$
D $a^{6} b^{6}+2 a^{3} b^{8}$
20. Find the product of $3 x^{2}+x-1$ and $4 x+5$.
A $3 x^{2}+5 x+4$
C $\quad 12 x^{3}+19 x^{2}+x-5$
B $12 x^{3}+4 x^{2}-4 x$
D $12 x^{3}+19 x^{2}+9 x-5$
21. If $2 x^{2}-5 x+7$ is subtracted from $4 x^{2}+2 x-11$, what is the coefficient of x in the result?

A 2
B 7
C -3
D -18
22. Which divisor of $-2 x^{3}+2 x^{2}-5 x-1$ results in a remainder of 86 ?

A $x+3$
B $x+2$
C $x-2$
D $x-3$
23. Which of the following is a factor of $3 x^{3}-10 x^{2}+3 x+10$?

A $x-2$
B $x+3$
C $x-3$
D $x+2$
24. Which of the following is NOT a factor of $\left(x^{3}-x^{2}-14 x+24\right)$?
A $x+1$
C $x-3$
B $x-2$
D $x+4$
25. What is the remainder when $2 x^{3}+3 x^{2}-x+1$ is divided by $x+3$?
A -25
C -8
B -23
D 25
26. Which is a factor of $x^{3}-3 x^{2}-4 x+12$?
A $(x+3)$
C $(x+4)$
B $(x-2)$
D $(x-4)$
27. If $x-2$ is a factor of a polynomial $f(x)$, which of the following statements does NOT have to be true?
A $f(2)=0$
C 2 is a root of $f(x)$.
B $f(-2)=0$
D 2 is a zero of $f(x)$
28. For $p(x)=4 x^{3}-28 x+24, p(-3)=0$. Which of the following must therefore be true?

A -3 is a factor of $p(x)=4 x^{3}-28 x+24$.
B $-3 x$ is a factor of $p(x)=4 x^{3}-28 x+24$.
C $x-3$ is a factor of $p(x)=4 x^{3}-28 x+24$.
D $x+3$ is a factor of $p(x)=4 x^{3}-28 x+24$.
29. Use the remainder theorem to determine the remainder when $p(x)=x^{3}+3 x^{2}-5 x-7$ is divided by $x+5$.

A -182
B -32
C -7
D 168
30. Write an equivalent expression for $a^{2}+2 a b+b^{2}$.
A $\quad(a+b)(a-b)$
C $(a+b)^{2}$
B $a^{2}+b^{2}$
D $a^{2}-b^{2}$
31. Write an equivalent expression for $x^{2}-2 x y+y^{2}$.
A $(x-y)^{2}$
C $(x+y)(x-y)$
B $(x+y)^{2}$
D $x^{2}-y^{2}$
32. Write an equivalent expression for $(a+b)\left(a^{2}-a b+b^{2}\right)$.
A $\quad(a+b)(a-b)^{2}$
C $\quad(a-b)^{3}$
B $a^{3}+b^{3}$
D $a^{3}-b^{3}$
\qquad 33. If you use the polynomial identity $(a+b)(a-b)=a^{2}-b^{2}$ and mental math to calculate $35 \bullet 25$, what subtraction expression results?

A $1000-125$
B $900-25$
C 1050-175
D 1225-625
34. Divide.
$\left(x^{3}+5 x^{2}+5 x-2\right) \div(x+2)$
A $x^{2}-3 x-1$
C $\quad x^{2}+3 x-1$
B $\quad x^{2}-3 x+1$
D $x^{2}+3 x+1$
35. Divide.
$\left(x^{3}-x+6\right) \div(x+2)$
A $\quad x^{2}+3$
C $x^{2}-x+3$
B $\quad x^{2}-2 x+3$
D $(x+1)(x-2)$
36. Divide: $\frac{x^{2}+8 x-5}{x}$
A $x^{2}+8-\frac{5}{x}$
C $x-5$
B $x+8-\frac{5}{x}$
D $x+8$
37. Divide: $\frac{b^{2}-3 b+3}{b-5}$
A $2 b-2+\frac{7}{b-5}$
C $\quad b-8+\frac{49}{b-5}$
B $\quad b+2+\frac{13}{b-5}$
D $\quad b+2+\frac{-13}{b-5}$
38. Divide $12 x^{2}+4 x^{3}+18+16 x$ by $2 x+4$.
A $2 x^{2}+2 x+3+\frac{14}{x+4}$
C $\quad 2 x^{2}+2 x+4-\frac{2}{x+4}$
B $2 x^{2}+2 x+4+\frac{2}{2 x+4}$
D $2 x^{2}+2 x+3+\frac{5}{x+4}$
39. The area of a rectangle is equal to $x^{2}+15 x+44$ square units. If the length of the rectangle is equal to $x+11$ units, what expression represents its width?
A $x-4$
C $x+4$
B $x+33$
D $x-33$
40. Simplify $\frac{x^{3}+4 x^{2}+3 x-2}{x+2}$.
A $(x+1)(x-1)$
C $x^{2}+4 x+3$
B $x^{2}+2 x-1$
D $x^{3}+4 x^{2}+2 x-4$
41. Divide: $\left(5 x+6 x^{3}-8\right) \div(x-2)$.
A $6 x^{2}-12 x+29-\frac{64}{(x-2)}$
C $6 x^{2}+12 x+29+\frac{50}{(x-2)}$
B $6 x^{2}+12 x+29$
D $6 x^{2}+5-\frac{8}{(x-2)}$
42. Write an expression that represents the width of a rectangle with length $x+5$ and area $x^{3}+12 x^{2}+47 x+60$.
A $x^{3}+7 x^{2}+12 x$
C $x^{2}+7 x+12$
B $x^{2}+17 x-38-\frac{50}{x+5}$
D $x^{2}+17 x+132+\frac{720}{x+5}$
43. What is the result if you divide to rewrite the expression $\frac{3 x^{2}-x+7}{x-1}$?

A $3 x+\frac{2 x+7}{x-1}$
B $3 x+11$
C $3 x+2$
D $3 x+2+\frac{9}{x-1}$
44. When you divide to simplify the expression $\frac{6 x^{3}+5 x^{2}+2 x+7}{2 x+3}$, what is the fractional part of the quotient?

A $\quad-5$
B $-\frac{5}{2 x+3}$
C $\frac{7}{2 x+3}$
D $3 x^{2}-2 x+4$
45. In the expression $x^{3}+4 x^{2}+3 x+12$, when the first two terms are grouped, and the last two terms are grouped, what is the common binomial factor?
A $x-4$
C $x+4$
B $x^{2}+3$
D $x+12$
46. In the expression $40 x^{2}-15 x+16 x-6$, when the first two terms are grouped, and the last two terms are grouped, what is the common binomial factor?
A $8 x-3$
C $5 x-2$
B $5 x+2$
D $8 x+3$
47. The volume of a box is $20 x^{3}+104 x^{2}+96 x$. What is a possible expression for the height of the box if the width is $2 x$ and the length is $5 x+6$?
A $5 x+6$
C $5 x+2$
B $2 x+8$
D $2 x-8$
48. Jon has rewritten the expression $10 x^{3}-35 x^{2}+18 x-63$ in order to factor it. Describe a reasonable next step for Jon to perform.
A Use the Commutative Property to rewrite the terms in a different order.
B Factor 7 from the second and fourth terms.
C Group the first two terms and factor out the greatest common term of $2 x-7$.
D Factor x from each of the four terms.
49. Completely factor $3 x^{4}-15 x^{3}-18 x^{2}$.
A $x^{2}\left(3 x^{2}+2\right)(1 x-9)$
C $3 x^{2}(x+1)(x-6)$
B $3\left(x^{2}+1\right)\left(x^{2}-6\right)$
D cannot be factored
50. What is the complete factorization of $10 x^{3}-35 x^{2}-20 x$?
A $(2 x+1)(x-4)$
C $5 x(2 x+1)(x-4)$
B $5 x\left(2 x^{2}-7 x-4\right)$
D $\quad x(2 x+1)(5 x-20)$
51. Completely factor $4 m^{4}-324$.
A $\left(4 m^{2}+36\right)\left(m^{2}-9\right)$
C $\quad 4(m+3)^{2}(m+3)(m-3)$
B $4\left(m^{2}+9\right)(m+3)(m-3)$
D cannot be factored
52. Factor $27 x^{2} z+36 x z+12 z$ completely.
A $z(3 x+12)^{2}$
C $3 z(3 x+2)^{2}$
B $12 z\left(2 x^{2}+3 x+1\right)$
D $3 z(3 x+2)(3 x-2)$
53. Factor $x^{3}+6 x^{2}-25 x-150$.
A $(x-6)(x-5)(x+5)$
C $(x+6)\left(x^{2}+25\right)$
B $(x-6)\left(x^{2}+25\right)$
D $(x+6)(x-5)(x+5)$
54. Factor the expression $54 x^{6}+16 x^{3} y^{3}$.
A $2 x^{3}(3 x+2 y)\left(9 x^{2}+6 x y+4 y^{2}\right)$
C $\quad 2 x^{3}\left(27 x^{3}+8 y^{3}\right)$
B $\quad 2 x^{3}(3 x+2 y)^{3}$
D $2 x^{3}(3 x+2 y)\left(9 x^{2}-6 x y+4 y^{2}\right)$
55. Factor $8 x^{3}+125$.
A $(2 x-5)\left(4 x^{2}-10 x+25\right)$
C $(2 x+5)\left(4 x^{2}-10 x+25\right)$
B $(2 x-5)\left(4 x^{2}+10 x+25\right)$
D $(2 x+5)\left(4 x^{2}+10 x+25\right)$
56. When $x^{3}-125$ is written as a product of a binomial and a trinomial, what is the trinomial factor?

A $x^{2}-5 x+25$
B $x^{2}+5 x+25$
C $x^{2}-10 x+25$
D $x^{2}+10 x+25$
57. Which of the following is equal to $x^{6}-64$?

A $-64 x^{6}$
B $\left(x^{3}+8\right)\left(x^{3}-8\right)$
C $\left(x^{3}+8\right)^{2}$
D $\left(x^{3}-8\right)^{2}$
58. A jewelry box has a length that is 2 inches longer than the width and a height that is 1 inch smaller than the width. The volume of the box is 140 cubic inches. What is the width of the jewelry box?
A 2 in.
C 6 in.
B 4 in.
D 5 in.
59. How many roots, including repeated roots, does the function $P(x)=-0.5 x^{3}-1.5 x^{2}+4 x-2$ have?
A 2
B 1
C 0
D 3
60. Which of the following lists all the roots of $x^{3}+3 x=9+3 x^{2}$?
A 3
C $3, \pm \sqrt{3} i$
B $3, \pm \sqrt{3}$
D $3, \pm \sqrt{3}, \pm \sqrt{3} i$
61. What are the complex roots of the polynomial $Q(x)=x^{2}+1$?
A 1 and -1
C i and $-i$
B $\quad Q(x)$ has no complex roots
D 0 is the only root

Multiple Response

Identify one or more choices that best complete the statement or answer the question.
\qquad 1. Which of the following statements are true about the polynomial function $p(x)$? (The zeros of $p(x)$ are integers, and the graph of $p(x)$ does not cross the x-axis at places other than those shown.)

A The degree of $p(x)$ is even.
B The degree of $p(x)$ is 4 .
C The leading coefficient of $p(x)$ is negative.
D The degree of $p(x)$ is at least 6 .
E The graph of $p(x)$ has a y-intercept of 150 .
F $\quad p(x)$ has four distinct zeros.
2. Simplify each of the following expressions to determine which are linear.

A $\left(x^{2}+6 x+9\right)+\left(x^{2}-4 x+4\right)$
B $2\left(2 x^{2}+x-10\right)-\left(5 x^{2}-3 x+1\right)$
C $4\left(3 x^{2}+5 x-4\right)-6\left(2 x^{2}+2 x-1\right)$
D $3\left(x^{2}-x+1\right)+\left(-2 x^{2}+4 x-5\right)$
E $\quad 4\left(2 x^{2}-6 x+7\right)-8\left(x^{2}-3 x+4\right)$
3. Use the remainder theorem and the factor theorem to determine which of the following binomials are factors of $p(x)=x^{3}-8 x^{2}+5 x+14$.

A $x+1$
B $x+3$
C $x+9$
D $x-2$
E $x-6$
F $x-7$

Short Answer

1. Draw a graph of an odd function with exactly two real zeros and a positive leading coefficient.
2. Let $p(x)=x^{3}-2 x^{2}-4 x+8$.
a. Identify the zeros of the function. List all zeros as many times as they occur.
b. Sketch a graph of the function.

3. Let $g(t)=(t+2)\left(t^{2}-5 t+4\right)$.
a. Identify the zeros of the function. Show your work.
b. Sketch a graph of the function.

4. Find the difference $\left(7 a^{3}+5 a\right)-\left(4 a^{3}+4 a\right)$.
5. Multiply $(b-4)\left(b^{2}+3 b-2\right)$.
6. Multiply $(5 x+3 y)^{2}$.
7. Find the product.
$\left(x^{2}-2\right)\left(2 x^{2}+5 x-3\right)$.
8. A triangle has a base of $6 a^{2} c$ and a height of $2 a^{3}-3 a c+1$. Write and simplify an expression for the area of the triangle. Show your work.
9. Use the remainder theorem and the factor theorem to show that $x-5$ is a factor of $p(x)=x^{3}-7 x^{2}+2 x+40$. Then factor $p(x)=x^{3}-7 x^{2}+2 x+40$ completely.
10. Use the remainder theorem to determine the remainder when $p(x)=x^{4}-4 x^{3}-11 x^{2}+66 x-72$ is divided by $x-4$. Then use polynomial long division to verify the remainder.
11. Divide.

$$
\left(x^{3}+x^{2}-20 x+24\right) \div(x-3)
$$

12. Simplify.
$\frac{2 x^{2}-4 x}{x-2}$
13. Divide.
$\left(15 x^{2}+10 x-5\right) \div 5 x$
14. Divide.

$$
\left(12 x^{2}-23 x-24\right) \div(4 x+3)
$$

15. Factor $15 a^{3}+20 a^{2}-6 a-8$ by grouping.
16. Let $p(x)=x^{3}-2 x^{2}-4 x+8$.
a. Identify the zeros of the function. List all zeros as many times as they occur.
b. Sketch a graph of the function.

17. $x^{3}-x^{2}+x-1=0$ is a polynomial equation.

Part A: Explain how you know, without factoring, the number of roots and the minimum number of real roots.

Part B: Factor the polynomial to support your answer to Part A. Explain which factor(s), if any, indicate(s) that there are complex roots.
18. $f(x)=x^{4}-16$ is a polynomial function.

Part A: How many zeros does f have? What are the possible combinations of real and complex zeros?
Part B: Find the zero(s) of $f(x)=x^{4}-16$. Explain how you found your answer(s).
Part C: Let $g(x)=x^{4}+16$. How many real and complex zeros does g have? Explain.

Essay

1. Is $x-5$ a factor of $3 x^{3}-17 x^{2}+11 x-5$? How do you know?
2. Is $x+3$ a factor of $2 x^{3}+4 x^{2}+x-4$? How do you know?
